Det sägs att en bild säger mera än tusen ord, trots det står en man och påstår att det som syns på bilden är en lögn och detta med endast två ord: ”Fake news”. Falska nyheter är inte på något sätt ett nytt begrepp. Termen har dock börjat dyka upp allt oftare. Vad är egentligen ”fake news” och vad kan de ha för koppling till fysik?
Falska nyheter eller ”fejknyheter” är ett medvetet spridande av desinformation, antingen via traditionella nyhetsmedier eller sociala medier. Falska nyheter har förekommit ända sedan antikens Rom och har under årtusendena använts för att ingjuta osäkerhet och skräck hos fiender, starta osanna rykten om politiska motståndare eller för egen ekonomisk vinning. Användningen av ”fejknyheter” har ökat under de senaste åren och speciellt på sociala medier.
I samband med presidentvalet i USA 2016 så förekom ”fake news” nästintill dagligen i nyhetsrapporteringarna, tillsammans med nya termer såsom: ”alternativa fakta” och ”alternativ information.” Alltså att beskriva något som fakta, trots att det strider mot vad som kan bevisas från tillgängliga källor. Till exempel att påstå att storleken på en publik var mycket större än vad ett fotografi av publiken klart visar. Vid detta tillfälle så påstods den ”alternativa fakta” vara den korrekta, medan den bevisligen korrekta informationen ansågs vara osann. De erkänt seriösa och traditionella nyhetsbolagen som rapporterade den korrekta informationen fick stämpeln ”fake news” av president Donald Trump och omnämns oftast således i hans tweets. Trump deklarerar sina egna åsikter som fakta och bevisligen sanningsenlig fakta som ”fake news”. Han skapar egen fakta och egna verkligheter för att förbättra sin egen situation. Presidenter ljuger, det är ingen nyhet. Faktagranskningshemsidan Politifact analyserar påståenden som amerikanska politiker framför och enligt dem så visade sig 26 % av president Obamas utsagor vara osanna. Trumps felprocent är 69 %, d.v.s. över två tredjedelar av hans officiella utsagor är till större delen icke sanningsenliga.
Som fysiker så approximerar jag dagligen. Jag använder inte helt exakta värden på konstanter och förenklar verkliga situationer genom t.ex. att negligera luftmotstånd. Jag använder mig alltså av delvis osann information och erhåller således ett delvist felaktigt svar. Jag skapar likt Trump en verklighet som är bättre anpassad för mig. Men mina approximationer är baserade på att jag förstår situationen. Till exempel: jag vill bestämma sluthastigheten hos en metallkula som släpps från en höjd på 2 meter. Då gör jag följande antaganden för att förenkla situationen: antar att kulan kommer att accelereras med gravitationsaccelerationen g = 9,81 m/s² och att kulan är så liten att luftmotståndet kommer ha minimal verkan på kulan under den korta sträckan den faller. Jag vet dock att gravitationsaccelerationen är bestämd mer exakt: g = 9,8197… m/s² för Helsingfors (beroende av breddgrad, höjd över havet, lokala densitetsskillnader i jordskorpan, etc..) och för att få ett exakt svar borde jag även ta luftmotståndet i beräkningarna.
Vill jag experimentellt bestämma hastigheten så behöver jag mäta tiden som det tar för kulan att falla till golvet. Denna tid kan bestämmas med en viss noggrannhet, inte exakt. Mäter jag med ett stoppur så är noggrannheten ca +/- 0.4 sekunder, medan ifall jag använder ljusportar så är noggrannheten ca +/- 0.001 sekunder. Experiment ska sedan utföras flertalet gånger under liknande förhållanden för att slutligen erhålla ett medelvärde och ett medelfel. Hur dyr och fin mätutrustning en fysiker än använder sig av så kommer den ha en felmarginal. (LIGO-detektorn kunde mäta en förändring i dess 4 km långa armar med en noggrannhet på 1/1000 av en protons diameter ). Detta gör att mitt resultat också kommer ha en noggrannhet eller en felmarginal. Denna felmarginal bestäms enligt principen för felens fortplantning, ett par olika formler som används beroende på hur uträkningen ser ut. Enkelt förklarat så fungerar det som trasiga telefonen: en ursprunglig felmarginal (noggrannhet) färdas genom mätdata och kombineras med andra felmarginaler och kommer slutligen ut som en kombinerad felmarginal. Resultatet från exempelexperimentet skulle kunna ha formen: hastigheten = 6.3 +/- 0.1 m/s.
I dagens informationssamhälle kan felmarginalen för ett påstående motsvaras av den omtalade ”nypan salt” som man ska ta vissa saker med. På nyhetssajter och sociala medier, främst Facebook och Twitter, så är nyhetsflödena fyllda av artiklar med varierande nivå av sanningsenlighet. Problemet är att i nyhetsflödet så är det betydligt svårare att observera felmarginalerna och felens fortplantning än i laboratoriets kontrollerade miljö. Det krävs sakkunnighet för att kunna hitta de, av politiker och journalister, utförda approximationer och felgränser. Läsaren behöver förkunskap i ämnet för att inte hen ska falla för ”fake news” propagandan. Den dystra sanningen är att ”fejknyheter” alltid har funnits och högst antagligen tyvärr alltid kommer att förekomma. Men med en allmänhet som är källkritisk, nyfiken och villig att förvärva kunskap om okända ämnen, så kommer spridningen att hindras.
Sebastian H, källkritisk och vetgirig fysiker.