Etikettarkiv: Matematik

Introduktion till darts

Inledning

Då jag lär mig nya sporter vill jag ofta betrakta dem ur ett matematiskt perspektiv. Darts är en gren som får mig att fundera på allt från algebra till spelteori, och därför vill jag ge en introduktion till hur man kan se på olika sporter och spel. Detta är främst en introduktion till spelformen 501, som är den absolut vanligaste spelformen när det gäller olika dartgrenar. I 501 startar man på 501 poäng varefter man ”kastar bort” poäng tills man når exakt 0. I artikeln kommer ”enheten” p att lämnas bort då man syftar på poäng.

Källa: https://en.wikipedia.org/wiki/Darts

Tavlan

Vi börjar med att gå genom några grundläggande saker då det gäller tavlan och poängräkning. Tavlan placeras så att bullen (mitten av tavlan) ligger på höjden 173 cm. På golvet markeras ett avstånd på 237 cm bakom vilket man måste kasta sina pilar. Tavlan är indelad i 20 lika stora numrerade sektorer (se bilden) som bestämmer hur många poäng sektorn är värd. Den yttersta ringen (dubbelringen) dubblar sektorns poäng och den inre ringen (trippelringen) ger tre gånger sektorns poäng. Exempelvis ett kast i trippelringen på sektor 8 ger 24. I mitten av tavlan finns bullen. Den består av den enkla bullen (gröna ringen) som ger 25 och den dubbla bullen (röda bollen) som ger 50.

501

501-matcher spelas en mot en. Man börjar alltså på 501 och spelar turer tills man når exakt 0. Dessutom måste man ”dubbla ut”, dvs. man måste nå 0 genom att kasta i dubbelringen. En tur går ut på att spelaren kastar tre pilar. Den spelare som först når 0, oberoende vem som börjar, vinner ett så kallat leg. Då man vunnit ett visst antal leg vinner man ett set, och efter ett visst antal vunna set vinner man matchen. Dessa antal beror på turneringen.

Beteckningar

Nästa steg i att börja studera 501 mera matematiskt är att definiera några olika beteckningar. Om vi betecknar en tur som t kan vi exempelvis skriva
t_2=(7,19,T7),
vilket skulle betyda att spelaren under sin andra tur kastade enkel 7, enkel 19 och trippel 7. Ett kast i dubbelringen betecknas med D.
Eftersom vi främst är intresserade av hur ett helt leg framskrider har vi orsak att nu ännu beteckna spelarens samtliga turer som
L = [t_1,t_2,\dots ,t_n].
Vi kan ännu beteckna spelarens totala poäng under ett leg som p(L). Om p(L)=501 så vann spelaren alltså ett leg.

Sats: Det krävs åtminstone 9 pilar för att avsluta ett leg.
Bevis: Vi gör ett motantagande, dvs. vi antar att det är möjligt att kasta 501 med 8 pilar eller färre, och samtidigt dubbla ut. För medelvärdet M av kasten gäller alltså nu att
M = \frac{501}{n} \geq \frac{500}{8} = 62,5 > 60 = T20.
Eftersom M>T20 vilket är det maximala poängantalet för ett kast, så har vi en motsägelse.

Följdsats: Det minsta antal pilar som krävs för att avsluta ett leg är 9.
Bevis: Låt L = [(T20,T20,T20), (T20,T20,T20), (T20,T19,D12)]. Då är p(L) = 501. Av detta exempel och på basen av föregående sats så är påståendet bevisat.
Ett leg som avslutats efter 9 pilar har fått namnet 9-darter eftersom de är rätt sällsynta. Exemplet ovan är den mest typiska 9-darter eftersom de professionella spelarna vanligtvis siktar på T20.S

Dricker du så dricker jag

Det är dags för en till ramble om matematisk logik.
Observera följande påstående:
”I varje bar finns en person så att om han dricker, dricker alla.”

Är påståendet sant eller falskt? Intuitivt låter det ju som total nonsense, men meningen kan granskas exakt med hjälp av predikatlogik.

Då vi betecknar personer i baren med x och y, fås följande symboliska form:
\exists x (D(x) \to \forall y D(y))

Kort förklaring:

  • \exists x betyder ”det existerar x så att…”
  • \forall y betyder ”för alla y gäller…”
  • D(x) innebär ”x dricker”
  • \to är en implikation, som har följande sanningstabell:

Två distinkta situationer gäller nu för baren:
Om alla i baren dricker, kan vi välja vilken som helst person y. Då är y en sådan person, att om han dricker, dricker alla.
Om det föregående inte gäller, finns det en person x i baren som inte dricker. Nu är båda påståendena D(x) och \forall y D(y) falska, så enligt sanningstabellen ovan är implikationen sann.

Tolkat i predikatlogik är alltså påståendet alltid sant, dvs. vi har en tautologi. Detta kan även verifieras exakt t.ex. med Tarskis sanningsdefinition.

Men beakta nu följande situation med tre personer på en bar:

Alla personerna dricker vid något skede, men ingen av dem får alla andra att dricka samtidigt. Nu verkar påståendet igen inte stämma, what gives?

Vad vi nyss har diskuterat är Drinker Paradox, som i själva verket inte är en paradox, men illustrerar hur matematisk logik inte alltid stämmer överens med naturligt språk. Skillnaden ligger i hur implikationer tolkas: i naturligt språk är en implikation inte meningsfull ifall premissen är falsk. Däremot har logikens s.k. materiella implikation ingen sådan begränsning: en levande person som påstår ”om jag är död lever jag förevigt” skulle tala sanning enligt denna modell.

Då vi ännu återgår till baren och figuren ovan, märker vi att logik inte tar tidsdimensionen i beaktande. Påståendet gäller bara som en materiell implikation då en specifik tidpunkt fixeras. Detta är meningsfullt, eftersom kunder kan anlända till och lämna baren, och i synnerhet kan vi inte tala om drickande personer ifall baren är tom.

Den materiella implikationen är inte onödig eller meningslös inom matematik, men tolkat inom en vanlig mening kan vi formulera väldigt underhållande ”sanna” påståenden. Om du vill hitta på egna: ersätt x och y med andra personer eller föremål, och D med någon annan egenskap än ”dricker”, så får du t.ex.

”I varje godispåse finns en karamell så att om den är choklad, 
är alla karameller choklad.”

”I varje ämnesförening finns en person så att om han är vegan, 
är alla veganer.”

”I varje människokropp finns ett ben så att om det benet bryts, 
bryts alla ben.”

Gott och blandat

Du kanske har hört att det krävs sju blandningar för att blanda en kortlek¹. Men varifrån kommer det här påståendet? Och krävs det faktiskt just sju blandningar?

Svaret på första frågan är ganska enkelt, påståendet kommer ursprungligen ur en artikel (”Trailing the Dovetail Shuffle to Its Lair”) av matematikerna Persi Diaconis och Dave Bayer. För att svara på den andra frågan måste vi titta noggrannare på artikeln.

Det jag menar med en blandning är en s.k. riffle shuffle², men i äkta matematisk anda så behandlar inte artikeln fysiska kortlekar som blandas utan en matematisk modell av detta. Modellen som används är den s.k. Gilbert-Shannon-Reeds modellen. I modellen går en blandning ut på att kortleken först delas i två ungefär lika stora högar. Högarna kombineras sedan ett kort i taget så att man slumpmässigt väljer en av högarna och placerar dess bottenkort överst i den nya kombinerade högen. Sannolikheten att en hög väljs är direkt proportionell mot hur många kort det finns i högen, ju fler kort desto sannolikare. Det har visat sig att denna modell motsvarar ganska bra hur människor i verkligheten blandar kortlekar.

Utöver en modell för kortblandning behöver man också ett mått på hur väl blandad en kortlek är. Det finns flera olika mått som går att användas men de fungerar alla så att man jämför resultaten av blandningen med en perfekt blandning (var alla arrangemang av korten är lika sannolika). Det måttet som Diaconis och Bayer bestämde sig för att använda kallas ”total variation distance” (TVD).

TVD kan definieras såhär. Låt A vara en händelse, t.ex. att första kortet är ruter tre eller något mer komplicerat som att man vinner en viss form av patiens. P1(A) är sannolikheten för händelsen enligt modellen och P2(A) är sannolikheten för händelsen om kortleken är perfekt blandad. TVD är lika med det högsta möjliga värdet på P1(A)-P2(A). Så om TVD=0.3 så finns det någon händelse som är 30 procentenheter sannolikare med en kortlek blandad enligt modellen än med en perfekt blandad kortlek. TVD=1 betyder alltså att kortleken är helt oblandad medan TVD=0 betyder att den är perfekt blandad.

I grafen ovanför ser vi att TVD hålls först nästan konstant men börjar sjunka snabbt kring 6 blandningar och efter det ungefär halveras det per blandning. För sju blandningar ser vi att TVD är ungefär 0.3 vilket är ganska lågt. Men är det tillräckligt lågt? Det tråkiga svaret är att det beror på vad man spelar. Det krävs färre blandningar för kortspel var man inte bryr sig om land. Men t.ex. finns det också en version av patiens var sannolikheten att man vinner är 30% högre om man använder en kortlek som har blandats sju gånger istället för en perfekt blandad kortlek.

Men TL;DR: Sju blandningar är helt ok för de flesta spel.

¹ T.ex. från Numberphile https://www.youtube.com/watch?v=AxJubaijQbI

² https://www.youtube.com/watch?v=Pd-71L3KoOI