Etikettarkiv: Limerick

Limericks med, för och av Spektrum

En limerick är en sorts skämtvers eller dikt. Namnet härstammar från den Irländska staden Limerick men versformens ursprung är okänt. Den brittiska författaren Edward Lear populariserade limerickversen. En typisk limerick kan se ut som följande:

”There was an Old Man of Cape Horn
Who wished he had never been born;
So he sat on a chair,
Till he died of despair,
That dolorous Man of Cape Horn”

Edward Lear: ”Book of nonsense”

En limerick ska således ha fem rader med rimordningen: A A B B A. Den första raden brukar av tradition avslutas med ett geografiskt namn men det är inte obligatoriskt. Rad 1, 2 och 5 har vanligen mellan åtta och 10 stavelser medan rad 3 och 4 har fem eller sex stavelser. Vi har här på Spektraklet tidigare skrivit limericks och om limerickar. Robert skrev om användandet av limerickar som minnesregler för matematiska formler: https://spektrum.fi/spektraklet/lustiga-limerickar-och-vetenskaplig-vers/ och Palle skrev limerickar om förra årets årsfestvecka: https://spektrum.fi/spektraklet/en-limerick-for-arsfesten-lxxxv/.

På engelska finns det en hel del finurliga limerickar med naturvetenskapstema. Bland annat från Harvards fysikfakultets hemsida hittas flera skämtsamma verser: https://www.physics.harvard.edu/academics/undergrad/limericks. Jag har dock inte lokaliserat ett liknande utbud på svenska. Därför efterlyser jag nu limerickar av er läsare, helst med naturvetenskapstema eller Spektrumanknytningar. Lämna gärna era limericks som kommentarer till denna artikel.

Här följer några limericks på tidigare nämnda teman:

Några av studielivets bästa hits
Avsluta en tentvecka med sitz
Festa på klubben
Ponga med Stubben
Och vakna på akutrummets brits

Det var en fysiker från Pampas
Som med fymmen försökte tampas
Men så gick något fel
I tentens första del
Och i hans hjärna det börja krampas

En man kämpade sig uppför Gumtäktsbacken
Väskan var tung och öm var nacken
I dörren han tog tag
Insåg att det var fel dag
Han svor, gäspade och vände på klacken

Relativistiska skämt är av sådan sort
Att längdkontraktionen gör den kort
För att inte bli sur
Behöver man tur
Så poängen inte lämnas….(bort)

Lustiga limerickar och vetenskaplig vers

Matematiska texter från antikens och medelålderns Indien hade en egendomlig struktur. För att hjälpa läsaren minnas dem framställdes problem och resultat ofta som vers. Till exempel Bakshali-manuskriptet är en sådan text.

I nutidens utbildning är poesi en form som används väldigt lite inom vetenskaplig utbildning. Trots det hittar man på nätet många matematiska verser, som människor skrivit för skojs skull eller för att minnas dem bättre. En särskilt minnesvärd versform är limericken, varav några presenteras till näst (i ökande svårighetsgrad):

”A dozen, a gross and a score
Plus three times the square root of four
Divided by seven
Plus five times eleven
Is nine squared and not a bit more”

Ramsan beskriver följande simpla uträkning:
\displaystyle\frac{12+144+20+3\sqrt{4}}{7}+(5\cdotp 11) = 9^2 + 0
Huruvida ramsan är användbar eller inte lämnas till läsarens beaktande. Till näst nåt en aning knepigare:

”The integral z squared dz
From one to the cube root of three
Times the cosine
Of three pi over nine
Is the log of the cube root of e”

Här beskrivs en annan identitet:

\displaystyle\int_{1}^{\sqrt[3]{3}}z^2dz \cdotp \cos{\left(\frac{3\pi}{9}\right)} = \ln{\left(\sqrt[3]{e}\right)}

Läsaren må påminnas att \cos{\left(\frac{3\pi}{9}\right)} = \frac{1}{2} och \ln{\left(\sqrt[3]{e}\right)} = \frac{1}{3}.
I allmänhet är de två föregående verserna skrivna mer för poesins skull, inte för innehållet. Till sist ett mer sofistikerat resultat:

”Take M a complete metric space
If nonempty, it’s always the case
That if f’s a contraction
Then under its action
Exactly one point stays in place”

Versen beskriver den s.k. Banachs fixpunktssatsen. Utan att överkomplicera: I ett fullständigt metriskt rum gäller att om på varandra följande punkter i en följd kommer godtyckligt nära varandra, så har också hela följden en gränspunkt den går mot. En kontraktion är en funktion som, givet två godtyckliga punkter, flyttar dem närmare varandra än de var förut.

MS Paint-illustration av Banachs fixpunktssats

Satsen säger, att kontraktionen f har endast en unik fixpunkt, dvs. en punkt som inte rör sig då kontraktionen appliceras.

Limericken om Banachs fixpunktssats hjälpte mig faktiskt minnas satsen till provet i topologi. Poesi är ett kraftigt verktyg för att få något att fastna i huvudet, och jag skulle vilja se det användas oftare inom matematikutbildningen. Så länge innehållet är ändamålsenligt alltså; förvränger man ekvationer för att göra dem till limericks så gör man det nog mest för poesins skull.