Taggarkiv: Humor

Hur logik och ordspråk kan förvränga världen

”Finns det hjärterum så finns det stjärterum”

Några veckor sedan trängde helt för många PRK-medlemmar in sig i en alldeles för liten bastu. Så klart, goda människor som vi är lät vi alla få en sittplats på bastulaven. Den just nämnda frasen är en viktig princip att hålla i tankarna för alla dylika situationer där det uppstår mera hudkontakt än vad som är behagligt.

En nördig matematiker kunde ju inte låta bli att påpeka att det kända ordspråket kan uttryckas i första ordningens logik:
Det finns hjärterum Det finns stjärterum.
Detta är alltså en logisk implikation, en form av propositionsuttryck. En intressant egenskap hos implikationer är att fast premissen är falsk och slutsatsen är sann, så är fortfarande hela implikationen sann. Med andra ord: Det kan finnas stjärterum fastän det inte finns hjärterum!

Någon som har sysslat lite mer med logik känner kanske också till begreppet kontraposition, dvs en logiskt ekvivalent, ”omvänd” form av samma implikation:
Det finns inte stjärterum Det finns inte hjärterum.
Det låter ju inte riktigt lika trevligt, men betydelsen är densamma! Med hjälp av matematisk logik kan vi alltså förvränga det vackra ordspråket till följande cyniska världsbild:
”Alla som inte ger dig en plats ogillar dig, men de som ger dig en plats gillar dig inte nödvändigtvis heller”.

Kan vi utsätta fler klassiska fraser för den totally-not-nödvändiga logiska behandlingen? Såklart!

”Dum fråga får dumt svar”
Du ställde en dum fråga ⇒ Du fick ett dumt svar.
Implikationen håller även om du ställde en smart fråga och fick ett dumt svar.
Tolkning: Då någon näsvist ger dig ett dumt svar, motiverad av denna fras, kan du påpeka att din fråga mycket väl kunde ha varit väl formulerad och smart. Svara lika näsvist tillbaka: ”Check your logic”.

”Allt som glittrar är inte guld”.
Låt X vara ett godtyckligt föremål med möjligheten att glittra och/eller vara guld. Då gäller:
¬(X glittrar ⇒ X är guld)
Här är ‘¬’ symbolen för en negation, dvs det motsatta påståendet. Uttrycket är ekvivalent med: (bortlämnat triviala mellansteg som sanningstabeller och De Morgans lag)
X glittrar och X är inte guld
Tolkning: Inget guld glittrar, eller det guld vi har sett glittra är egentligen inte guld.

Som vi ser är en kombination av logik och ordspråk inte alltid överensstämmande med verkliga livet. Vad gör vi åt detta? Jo, vi hyllar Boole och  Gödel och tolkar matematisk logik som det enda rätta. Ordspråken lämnar vi åt språkstuderande; vi har ju inte hjärterum för humanister.

Det RIKTIGA svaret till livet, universum och allting

Varning!
Följande artikel innehåller grunden för lösningarna till och för alla problem i världen.
Läs på egen risk!

Som spelmånadens sista spelartikel talar vi om… SPEL! Men denna gång i form av en liten introduktion av spelteori.

Vad går spelteori då ut på? Det handlar ganska långt om att man i olika spel söker fram vad är det rationellt sett bästa draget. Spelen utgår alltså från att spelarna är rationella och inte låter “känslor” eller “moral” påverka deras drag. Man är ute efter att maximera ens egen vinst och inget mer. Vi tar och kollar på ett trivialt spel som exempel:
Anta att en studerande, vars favoritmat är pizza, är hungrig och har nyligen inskaffat sin favoriträtt. Låt pizzan vara godtyckligt god och mättande. Studeranden har nu två val: att äta pizzan eller inte äta den. Matrisen för detta spel skulle se ut på följande vis:

GT_pizza

Det självklara valet skulle nu vara (rationella som vi är) att äta pizzan. Att låta bli att äta pizzan ger inget bättre jämfört med att äta den.

Hänger du med såhär långt? Då går vi vidare till spel med två spelare:
Anta att två studiekamrater råkar se varandra vid Kampen på ett avstånd som överskrider den socialt acceptabla hälsningen. Om en av dem hälsar, så hälsar den andra nog tillbaka och saken är biff. Om ingendera hälsar börjar båda fundera på saken, vilket känns pinsamt. Matrisen för detta spel skulle se ut som följande:

GT_halsaOchVanta

Vad är det bästa draget? Rationella som vi är, så vill vi inte skapa friktion mellan våra vänskapsband, så det självklara draget skulle nu vara att hälsa. Det räcker med att ena börjar hälsningen, men eftersom en hälsning inte kräver mycket ansträngning, så kan man lika bra själv hälsa genast.

Förrän vi går vidare till nästa spel, så tar vi en tillbakablick på spelet ovan. I spelet är det relativt enkelt att se vad det bästa valet är, men vad om det inte skulle vara lika klart? Då kan vi använda oss av det fina verktyget som kallas matematik! Vi kan ge resultaten olika värden beroende på hur bra de är och från dessa värden kan vi sedan räkna ut den bästa strategin. I spelteorin används benämningen Nash equilibrium (Nash jämnviktsläge, eller förkortat bara Nash) för de bästa strategiparen och dessa kan räknas enligt följande:
Vi kollar på hälsningsmatrisen pånytt, men denna gång ur matematisk synvinkel med värdena 0 och 1 som resultat.

GT_numeriskHalsaOchVanta

Låt oss säga att vi nu spelar som radspelaren. Nu kan vi från matrisen se att om kolumnspelaren väljer att Hälsa får vi i vilket fall som helst resultatet 1. Alltså är båda dragen lika värda för tillfället. Till näst kollar vi på vad som händer om kolumnspelaren väljer att Vänta. Nu ser vi att draget Hälsa ger resultatet 1, medan Vänta ger resultatet 0. Eftersom 1 > 0 vill vi då hellre välja att Hälsa. Därmed lönar det sig alltid som radspelare att Hälsa. Spelet är symmetriskt, så då vi undersöker kolumnspelaren kommer vi också fram till att det alltid lönar sig för kolumnspelaren att Hälsa. Detta ger oss att vårt Nash är (Hälsa, Hälsa), eftersom det lönar sig för både och att Hälsa.

So far so good. Nu när du fått en inblick till spelmatriser och deras lösningar så tar vi en titt på svårare spel. Till näst använder vi oss av spelteori för att komma fram till den populationsdynamiskt sett evolutionärt stabilaste och optimalaste dejtningsstrategin (Varning! Har inte testats i praktiken (med framgång)).

GT_meme

Vi börjar med att kolla på dejtningsspelet.
I dejtningsspelet finns det två strategier, att sikta på en längre dejtningsperiod där man bygger upp ett romantiskt förhållande under en längre tid (med långa tysta promenader runt Kaisaniemi <3) eller sen kan man gå rakt på sak och genast hoppa i sängen med den andra. Om spelarna har olika dejtningsstrategier tar tålamodet slut för den som valt en Kort strategi. Förhållandet går ingen vart och i så fall har båda slösat sin tid.
Alltså får vi följande matris:

GT_courting

Om man är fullkomligt rationell väljer man förstås den kortsiktiga strategin, eftersom tidsförlusterna är då mindre och man får lika mycket ut av förhållandet såsom man skulle få vid långtidsstrategin. Genom att ge matematiska värden för dessa, så har vi matematiskt bevisat att det lönar sig att dejta kortsiktigt. (Inte riktigt sant, eftersom både (Kort, Kort) och (Långt, Långt) kan vara Nash, beroende på hur mycket ett förhållande är värt jämfört med den satsade tiden, men vi håller oss till en ensidig åsikt för artikelns skull.)

Till näst ser vi på uppfostringsspelet.
I detta spel har spelarna *erhem* kopulerat och tillsammans fått en avkomma. Misstag eller inte, alternativen för båda spelare är att Stanna med sin avkomma eller Rymma iväg. Om båda spelare väljer Stanna, så delar de på tiden att uppfostra avkomman, medan om båda väljer Rymma, så kommer Socialen och för bort den (till en onämnd plats).

Vid fallet att spelarna väljer olika, så kommer den som valt att Stanna att ta fullt ansvar för avkomman, medan den som valt Rymma går vidare i livet nöjd av att ha (re)producerat en avkomma.

GT_parenting

Notera att matrisen inte längre är symmetrisk! Eftersom det är skillnad vid (Rymma, Stanna) och (Stanna, Rymma), så kollar vi i denna matris specifikt alltså på radspelarens resultat!

Här märker vi att den bästa strategin beror på hur mycket man rationellt sett värderar Avkomman jämfört med ansträngningen av Uppfostran. Beroende på dessa parametrar, så kan vi få som Nash antingen (Stanna, Stanna) eller (Rymma, Rymma).

Men vad om man vill kolla på flera saker samtidigt och inte bara en sak i taget? Spelteori har lösningen även för det! Ett spel kan innehålla flera faser, där faserna är mindre enskilda spel. Exempelvis kan vi kombinera de två spelen ovan för att få följande spel:

GT_multistage

Lösningen för dejtningsmatrisen är nu beroende av uppfostringsmatrisen, så vi måste lösa den först. Med vidare matematisk bollning (vilket ni kan bekanta er på i “Evolution and the Theory of Games”-kursens material) får vi till sist att de rationellt sett bästa strategierna är (Kort och Stanna) och (Kort och Rymma). Detta gäller för nästan alla parametrar (dvs. värderingarna på Avkomman med mera). I vissa fall är också (Lång och Stanna) lönsam, men vi kan alla hålla med om att det är onödigt att sätta för mycket tid på romantik!

Slutresultatet är att ifall alla skulle vara rationella istället för att bry sig om onödiga saker som känslor och annat tjafs, så skulle alla vara i korta förhållanden och sedan se hur mycket man bryr sig om avkomman. Så säger spelteorin… och matematiken ljuger aldrig!
– Team WaPaa

Veckoslut

En diktsamling av pseudo-moderna haikun av den snart världsberömda, dock alltid söndriga, yrbollspoeten Emil L.

Förord

Min kära Jonas.
Du sade: EN artikel.
Min förrädare.

 

Bok 1: Att Vaka

Skrivit på kandin.
Hela dagen i Gumtäkt.
Dags att gå sitsa.

Alla sätter sig.
Nu äter vi och sjunger;
med snaps, efter snaps.

Helan och halvan,
och någonting om minnet.
Nej! Int Theobald…

Nu kommer punschen.
Usch vad jag hatar punschen.
Men dricker ändå.

Nån spelar beerpong.
Hen kastar bollen, missar.
Bollen hittas ej.

Sen sade Herr J:
”Ditt hår luktar till anus”
Gjorde mig ordlös.

Herr V drack en öl.
Han skrattade, men varför?
Han är i fyllan.

En shot, två shot, tre.
Jag är bäst på att dansa.
Fyr shot, fem shot, spy.

”Det är dags att gå.”
Tre timmar senare dock,
är det dags att gå.

Oändlig hunger.
Jag skådar en snägäre.
”Ge mig en lihis.”

Äntligen hemma.
Jag törstar, öppnar kylen,
ser en gatorade.

Bok 2: Att vakna

Jag drömde om Fymm
och vaknade till Kvant. Mek.
Vill ej leva mer.

Ack, vilken fiilis.
Ack, var äro ämbaret?
Ack, det är försent.

Ett steg från sängen.
Men hela världen snurrar.
Lägger mig igen.

Mitt huvve bultar.
Det finns ingen burana.
Är detta slutet?

Torr som sahara.
Långsam som en sköldpadda.
Sätter på Netflix.

Tar fram snapsboken,
Läser allas små skrifter.
Så många kukar.

Vad strupen törstar.
Var äro min gatorade?
Nån har druckit den.

Kokade kaffe.
Njuter av svarta guldet.
Måste på vessa.

Det värsta är slut.
Min mage börjar kurra.
Ser en halv lihis.

Tröttheten stiger.
Inspirationen lider.
Kan ej skriva mer.

 

  • Emil L., söndrig poet och allmän yrboll