Kategoriarkiv: 2018

Texter från 2018

Lustiga limerickar och vetenskaplig vers

Matematiska texter från antikens och medelålderns Indien hade en egendomlig struktur. För att hjälpa läsaren minnas dem framställdes problem och resultat ofta som vers. Till exempel Bakshali-manuskriptet är en sådan text.

I nutidens utbildning är poesi en form som används väldigt lite inom vetenskaplig utbildning. Trots det hittar man på nätet många matematiska verser, som människor skrivit för skojs skull eller för att minnas dem bättre. En särskilt minnesvärd versform är limericken, varav några presenteras till näst (i ökande svårighetsgrad):

”A dozen, a gross and a score
Plus three times the square root of four
Divided by seven
Plus five times eleven
Is nine squared and not a bit more”

Ramsan beskriver följande simpla uträkning:
\displaystyle\frac{12+144+20+3\sqrt{4}}{7}+(5\cdotp 11) = 9^2 + 0
Huruvida ramsan är användbar eller inte lämnas till läsarens beaktande. Till näst nåt en aning knepigare:

”The integral z squared dz
From one to the cube root of three
Times the cosine
Of three pi over nine
Is the log of the cube root of e”

Här beskrivs en annan identitet:

\displaystyle\int_{1}^{\sqrt[3]{3}}z^2dz \cdotp \cos{\left(\frac{3\pi}{9}\right)} = \ln{\left(\sqrt[3]{e}\right)}

Läsaren må påminnas att \cos{\left(\frac{3\pi}{9}\right)} = \frac{1}{2} och \ln{\left(\sqrt[3]{e}\right)} = \frac{1}{3}.
I allmänhet är de två föregående verserna skrivna mer för poesins skull, inte för innehållet. Till sist ett mer sofistikerat resultat:

”Take M a complete metric space
If nonempty, it’s always the case
That if f’s a contraction
Then under its action
Exactly one point stays in place”

Versen beskriver den s.k. Banachs fixpunktssatsen. Utan att överkomplicera: I ett fullständigt metriskt rum gäller att om på varandra följande punkter i en följd kommer godtyckligt nära varandra, så har också hela följden en gränspunkt den går mot. En kontraktion är en funktion som, givet två godtyckliga punkter, flyttar dem närmare varandra än de var förut.

MS Paint-illustration av Banachs fixpunktssats

Satsen säger, att kontraktionen f har endast en unik fixpunkt, dvs. en punkt som inte rör sig då kontraktionen appliceras.

Limericken om Banachs fixpunktssats hjälpte mig faktiskt minnas satsen till provet i topologi. Poesi är ett kraftigt verktyg för att få något att fastna i huvudet, och jag skulle vilja se det användas oftare inom matematikutbildningen. Så länge innehållet är ändamålsenligt alltså; förvränger man ekvationer för att göra dem till limericks så gör man det nog mest för poesins skull.

 

Extreme hänggubbe

Dags för ett litet ordspel!

Spelet liknar hänggubbe eller hängman, i och med att du skall gissa ett ord som bara jag vet. Du kan gissa bokstäver, ord eller delar av ord, exempelvis ”kaff”.

Jag måste svara på om din gissning finns i mitt ord. Om det dolda ordet är ”abrakadabra” och du gissar på ”bra” svarar jag jakande, men om du gissar ”arb” svarar jag nekande. Du får inte veta var i ordet din gissning förekommer.

Frågan är nu, vad är det snabbaste sättet att klura ut ordet? Några lösningar beskrivs nedan, läs på egen risk!

Att testa sig fram tar i genomsnitt 1/2 * bordn/(bA! bB! … bZ!) försök, där bord är mängden olika bokstäver som finns i ordet. Ordet ”abrakadabra” tar ungefär 1/2 * 2911/(5! 2! 2! 1! 1!) ~ 1.27 * 1013 försök. Ett Twitter-meddelande som inkluderar siffror och små bokstäver kan ta upp till 1.37 * 10210 försök.

Så istället för att bara hitta bokstäverna som förekommer i ordet och sedan testa oss fram, varför klurar vi inte ut alla 2-strängar (2 bokstäver långa teckensträngar) som finns i ordet? Kan vi då få reda på ordet snabbare? Svar: jo.

Att klura ut alla 2-strängar kräver högst B + bord * (bord-1) / 2 eller i värsta fall B/2 + B2/2 gissningar, där B är mängden användbara bokstäver. Detta tar inte så värst länge, men vad har man för nytta av 2-strängar? Kan man med hjälp av dessa bygga snabbt upp 3-strängar?

Genom att visualisera 2-strängar som en graf kan man skära bort flera onödiga gissningar. Noderna i grafen är alla 2-strängar vi känner till, och kanterna länkar strängarna till varandra så att följande sträng börjar med delsträngen som den första slutar med. Notera att mängden olika k-strängar av ordet inte kan vara mer än n-k+1 (eller Bk för den delen). Mängden kanter i grafen kan inte vara mera än (n-k+1) * B, eftersom varje nod har högst en kant per bokstav. 3-strängar kan fortsättningsvis visualiseras som en graf, vilket till slut leder till en n-sträng, vilket måste vara ordet vi söker efter.

Notera att grafen för alla 3-strängar i ”abrakadabra” har blivit en stor ögla. I detta fall kan man gissa sig fram till lösningen genom att välja en nod som startpunkt, och sedan åka ett varv runt. I detta fall får man till näst gissningarna ”abrakadab”, ”brakadabr” och ”rakadabra”. Dessa skapar en simpel graf på 3 noder som sedan leder till ordet vi letade efter, ”abrakadabra”

Värsta möjliga antalet gissningar för ord blir till sist:

B/2 + B2/2 + (n-1) B + (n-2) B + … + 1 B = B/2 + B2/2 +  n2B/2 – nB/2

vilket vi kan avrunda glatt till n2B. I verkligheten krävs det mycket mindre arbete, eftersom grafen som bildas snabbt blir en ögla (”abrakadabra” krävde 45 + B gissningar, och en 137 karaktär lång meddelande krävde ~2100 + B gissningar). Att räkna ut det praktiska tidskravet av den presenterade algoritmen lämnar jag som läxa för läsaren.

PS. Fresh Prince of Bel-Air theme orden (1788 tecken) löses på 31446 gissningar.

SPEKTRALNYTT III/2018

Om ni har förslag på vad som kunde tilläggas och ändras på i fortsättningen, så tar vi på redaktionen gärna emot dem. Också saftiga nyhetsbitar om spektrumiter och naturvetenskapliga ämnen är mer än välkomna.

–––––––––––––––––––––––––––––––––––––––––––––––––––––

Under period två ordnas en hel del svenskspråkiga kurser vid kampus Gumtäkt (och kampuset i Vik). Härifrån kan man hitta vilka kurser som undervisas på svenska under nästa period. Kurserna börjar nu nästa vecka så det lönar sig att kolla att man är anmäld till alla kurser man planerat att gå.

–––––––––––––––––––––––––––––––––––––––––––––––––––––

Graduerade under period 1: 

  • Oliver Flinck -kandidat i naturvetenskap, fysik
  • Otto Lindblom – kandidat i naturvetenskap, fysik

Redaktionen gratulerar!

–––––––––––––––––––––––––––––––––––––––––––––––––––––

Den 13 oktober ordnade Spektrum historiens första (!) Snägäre Appro . Sex stycken lag antog modigt utmaningen och vinnande ur kampen kom laget Borgåbisarna med smått otroliga 27 poäng . Laget bestod av: Frans G, Tobias L. och Markus G.

Redaktionen gratulerar!

–––––––––––––––––––––––––––––––––––––––––––––––––––––

Redaktionen önskar er alla en trevlig(t skrämmande) Halloween och en fridfull start på den nya perioden!

–––––––––––––––––––––––––––––––––––––––––––––––––––––

Periodens dåliga vits:

A neutron walked into a bar and asked:
"How much for a gin and tonic?"
The bartender smiled wryly and replied:
"For you, no charge."